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Eigenvalue density oscillations in separable microwave resonators
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We study periodic orbit induced oscillations in the density of states for the electromagnetic
eigenvalue problem in separable three-dimensional resonator geometries. The periodic orbit theory
of Berry and Tabor [J. Phys. A 10, 371 (1977)] is adapted to the eigenvalue problem for the
transverse electric and magnetic modes, respectively. Discrete symmetries give rise to next to
leading order corrections, as is demonstrated in particular for cylinders with square and triangular
cross sections. In particular, orbits with an odd number of reflections that do not contribute in
leading order according to results of Balian and Duplantier [Ann. Phys. (N.Y.) 104, 300 (1977)]

are shown to contribute in next to leading order.

PACS number(s): 05.45.4+b

I. INTRODUCTION

Measurements on flat microwave resonators have
recently been used to investigate properties of the
Helmholtz equation in the short wavelength limit [1-3].
These resonators are of cylindrical shape and flat in the
sense that for several hundred of the lowest lying states
the electromagnetic field is in a transverse magnetic mode
with an E component along the axis of the cylinder.
Then the eigenvalue problem reduces to that for a two-
dimensional (2D) Helmholtz equation for a scalar field,
which vanishes on the boundaries. It is this reduction in
dimensionality that allows one to transfer all results from
standard short wavelength or “semiclassical” theory [4]
to the electromagnetic eigenvalue problem in a flat cav-
ity. It is the purpose of this paper to investigate some of
the changes that occur when the cavity is not flat, i.e.,
when excitations in all three directions mix.

The electromagnetic eigenvalue problem is distin-
guished from the corresponding scalar problem by the
presence of the polarizations of the field. Nevertheless,
the semiclassical expansion for the density of states turns
out to be very similar to that for the scalar problem [5]. It
splits into a mean density of states, which now doubles
because of the two possible polarizations and an oscil-
latory contribution from orbits that close after a certain
number of reflections off the walls. The analysis of Balian
and Duplantier [5] shows that the contributions from or-
bits with an odd number of reflections are suppressed in
leading order stationary phase approximation compared
to the amplitudes of the orbits for scalar fields. The
amplitude for an orbit with an even number of reflec-
tions is 2cos times that for the scalar problem if the
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polarization is rotated by an angle ¢ along the periodic
orbit. This may be understood by following a plane wave
around the orbit. At every reflection, the polarizations
change by a reflection in a plane perpendicular to the
direction of propagation. After an odd number of reflec-
tions, there remains a reflection in that plane so that the
trace over the polarizations vanishes. After an even num-
ber of reflections the total change is a rotation with trace
2 cos .

Below we will focus on empty cylindrical cavities with
perfectly conducting walls [6,7]. Then the electromag-
netic eigenvalue problem may be separated into two
scalar ones for the so-called transverse electric and trans-
verse magnetic modes. If the axis of the cylinder is par-
allel to the 2 axis, one can write for the TM modes

B(z,y,2,t) = curl fu(2,y, 2)e-e™" (1)

and

E(.’I:,y,z,t) = i—curlcurlfM(m,y,z)ezeiwt , (2)

where fas has to satisfy the 3D Helmholtz equation

o? o2 o2
(6—mz—+—a?+g+k2)f]\/{=0. 3)

k = w/c, with ¢ the speed of light, is the wave number.
Because of the z independence of the cross section and
the boundary conditions that the tangential component
of E at top and bottom of the cylinder has to vanish,
one can split off the z dependence (parametrized by an
integer p) and write

fum(z,y,2) = Yvum(z,y) cos(prz/H) (4)

for a cylinder that extends between 0 < z < H. Then
1 satisfies the 2D Helmholtz equation
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with k%2, = k? — n%p%/H? and with the boundary con-
dition that s vanishes on the sides. Thus fs satisfies
Neumann boundary conditions at the top and bottom
and Dirichlet boundary conditions at the sides.

For the T'E modes one proceeds in an analogous fash-
ion, starting from

E(x,y, 2,t) = curl fg(z,y, 2)e,e™* ©)
and
B(z,y,2,t) = —icurlcurl fe(z,y,2)ee™t ()

where fg satisfies the same 3D Helmholtz equation as
fum. However, the boundary conditions change: fg now
satisfies Neumann boundary conditions at the sides and
Dirichlet boundary conditions at top and bottom. Thus
fE factorizes into

fE(z,y,2) = YE(z,y)sin(prz/H), (8)

where 9 is a solution to the 2D Helmholtz equation with
Neumann boundary conditions at the sides. For further
details, see [6,7].

Because of this separability one can reduce the elec-
tromagnetic eigenvalue problem to two scalar ones where
the semiclassical trace formula can be applied. The to-
tal spectrum, including degeneracies, is then given by
the superposition of the two scalar ones. This suggests
another argument for the suppression of orbits with an
odd number of reflections. Let an orbit close after r re-
flections off the top and bottom and s reflections off the
sides. Note that for a periodic orbit in a cylindrical cav-
ity the number of reflections off the top and bottom is
always even, so that the total number of reflections is an
even number plus the number of reflections off the sides
of the cavity. At the sides with Dirichlet boundary con-
ditions, the phase loss is 7w for each reflection, whereas
at the sides with Neumann boundary conditions there is
no phase loss. Thus, the total phase change for an orbit
contributing to the spectra of the TM and T E subspaces
is —smmod2m and O, respectively. In a superposition
of the two spectra, the contributions from orbits with an
odd number of reflections will have a phase difference of
—m between the two subspaces and will thus cancel out.
For an even number of reflections a factor of 2 is obtained.
As there are no phase rotations along any periodic orbit
for cylindrical cavities, the result is in perfect agreement
with the more general theory of Balian and Duplantier
(5].

The easiest way to check this theory is by a suitable
Fourier transform of the density of states that reveals
the amplitudes and phases of the periodic orbit contri-
butions. Specifically, the semiclassical trace formula for
the density of states in wave number of N-dimensional
integrable billiards (electromagnetic or scalar) is of the
form (Berry and Tabor [8])

p(k) = po(k) +4Re Y k(P~1/24 ¢ikLs ()

p

where L, is the length and D the degeneracy of the peri-
odic orbit. Degeneracy here means the number of direc-
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tions in which the position of the orbit in the cavity can
be altered continuously without changing its shape on
the energy shell. po(k) denotes the smooth Weyl approx-
imation (which is of no concern here) and the amplitudes
A, are determined by the geometry of constant energy
surfaces in action space. The dominant scaling of the am-
plitudes with energy or wave number has been taken out
by the factor k(P~1)/2; the detailed form of the k depen-
dence of the A,, as well as subdominant k dependencies
will be discussed below.

If w(k) denotes a normalized window function in wave
number space and

w(l) = _+°° dk w(k) e (10)

its Fourier transform in length space (length being canon-
ically conjugate to wave number), then

1ofre 1 (1-D)/2 ikl
Py dk ip(k)k w(k) e

+oo
_ 2_17;/_ dk po (k) k(1D 24y (k) ¢

+) 24,6(1 - L) @ (1), (11)

where ® denotes the convolution product, reveals the am-
plitudes of the orbits. This is because the factor k(1 —D)/2
eliminates the k£ dependence of the amplitude factors and
the amplitude of the periodic orbit is just a real or com-
plex number. The term, involving po(k), gives a contri-
bution of high amplitude at very small lengths accord-
ing to the Fourier transform of a monotonically growing
function in k space.

In Sec. II we will present Fourier transforms of the
wave number spectra as obtained for cylindrical cavi-
ties with circular, square, and triangular cross sections.
The shown spectra give the absolute values of the Fourier
transforms, except for Fig. 2, where the cosine transform
is shown. To calculate the numerical spectra we used
a Gaussian distribution centered at the middle a of the
considered k range, and a width o = 20,

w(k) = exp[—(k — a)?/20?]. (12)

1
V2o
The peak height is normalized to one for the Fourier
transformed window function.

The Fourier transforms reveal next to leading order
corrections, which can be understood as corrections to
the density of states due to orbits on the boundary of
the billard or due to other symmetry related effects. The
formal theory is worked out in Sec. III. We conclude with
a short summary in Sec. IV.

II. EIGENVALUES IN CYLINDRICAL CAVITIES

A. Circular cross section

The Helmholtz equation in a circular domain separates
in polar coordinates [6]. The solutions are thus propor-
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tional to

P(x,y) ~ J)p (kr)e™?, (13)
where r, ¢ are polar radius and angle, respectively. To
preserve periodicity in the azimuthal direction, v has to
be an integer, v = 0,%1,42,... . For Dirichlet bound-
ary conditions, the appropriate wave numbers k,(,f,),)l are
determined by the zeroes of the above functions at the
boundary r = R,

J,(kP)R) =0. (14)

Similarly, for Neumann boundary conditions, the appro-
priate wave numbers k,(,l\,’,z are determined by the zeroes
of the radial derivatives of the above functions at the
boundary r = R,

J(kIR) =0. (15)
Each eigenvalue for v # 0 is doubly degenerate because
of the two choices v and —v. Thus the eigenvalues of the

electromagnetic cylindrical resonator with circular cross
section of radius R and height H are given by

2
bram = 3 (422) + (102, (16)
1=0,1,2,3..., doubly degenerate for v # 0 and
2
Ftuvim = \/ (KR) "+ (w2, (17)

1=1,2,3,..., also doubly degenerate for v # 0.
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FIG. 1. Fourier transform of the electromagnetic eigen-

value density for a cylindrical cavity of circular cross section
(height 7, radius 1, including the lowest 1320508 eigenvalues
for the scalar field and 2937855 eigenvalues for the electro-
magnetic field of wave number k < 200). The labels (m,n,p)
above the peaks give the numbers m of radial oscillations, n of
rotations around the center, and p of vertical collisions. The
total number of collisions is thus m + p.
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The Fourier transform of all eigenvalues up to k& = 200
for a resonator with radius R = 1 and height H = «
(a total of 1320508 eigenvalues for the scalar field with
Dirichlet BC and 2937855 for the electromagnetic field)
with the window (1) is shown in Fig. 1. One notes a
series of isolated peaks that can be assigned to periodic
orbits that have the topology indicated by the numbers
above the peaks. The first number gives the bounces off
the walls, the second the number of revolutions about the
center of the disc, and the third the number of reflections
off the top and bottom. Rather noticeable is the poor res-
olution near lengths L, , = 1/(27n)2 + (2mp)? for integer
P, n, which correspond to orbits that go around the cylin-
der once or several times, with or without translation
along the symmetry axis. These orbits are an example
of whispering gallery modes and are accumulation points
of an infinite family of orbits with an increasing number
of reflections off the outer circle. They occur also in the
stadium billiard (see [3]) and in the sphere (see [9]).

More important in the present context are the notice-
able, but small amplitudes that come with orbits with
an odd number of reflections off the walls. In agreement
with the theory of Balian and Duplantier [5] their ampli-
tude is smaller and of lower order in k for the electromag-
netic field than for the scalar field (i.e., it decays further
if larger intervals in k are Fourier transformed). Never-
theless, by the argument about the phases given in the
introduction one might have expected the amplitudes of
these orbits to disappear completely. To analyze this be-
havior further we show in Fig. 2 the cosine transforms of
the spectra of the 2D Helmholtz equation with Dirichlet
and Neumann boundary conditions, respectively. This
clearly shows that within numerical accuracy, all orbits
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FIG. 2. Cosine transforms for the scalar eigenvalue prob-
lem in a circle of radius 1 with Dirichlet and Neumann bound-
ary conditions. For the orbits with an odd number of re-
flections the amplitudes for Neumann and Dirichlet bound-
ary conditions have different signs. All 36 647 eigenvalues for
Neumann and 39 940 eigenvalues for Dirichlet boundary con-
ditions with k < 400 are included.
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carry the same amplitudes, but alternating phases. In a
superposition of the two eigenvalue sets the contributions
from orbits with an odd number of bounces thus cancel.
The remaining amplitude seen in Fig. 1 is related to the
top and bottom boundary conditions, which are similar
to the ones at the sides of a square, to which we turn
now.

B. Square cross section

In a cylindrical cavity with square cross section the
wave equation separates in the three directions. The cal-
culation of eigenvalues is straightforward and yields

2 2 2

boer = () < () 4 () 09
where d is the side length of the square and H the height
in the z-direction with 0 < z < H. For TM modes
one has n,m = 1,2,... and p = 0,1,... and for TE
modes n,m = 0,1,... and p=1,2,.... As there are no
orbits with an odd number of bounces off the walls in the
square, we expect no cancellations.

However, there is a slight difference between the ampli-
tudes for TE and T M modes (not shown). To investigate
this difference further we again turn to a lower dimen-
sional example, the 2D square billard. Taking the sides
of the square to be =, the eigenvalues are n? + m? with
n,m =0,1,2,... for Neumann boundary conditions and
vith n,m = 1,2,... for Dirichlet boundary conditions.
The amplitudes of some of the periodic orbits are found
to be different for Dirichlet and Neumann boundary con-
ditions as shown in Fig. 3. This effect, which is also

1.0
Neumann BC
—— Dirichlet BC
+ analytic &
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FIG. 3. Fourier transforms for the scalar eigenvalue prob-
lem in a square of sidelength 7 with 70370 eigenvalues for
Dirichlet and 70 969 eigenvalues for Neumann boundary con-
ditions with k& < 300. The k dependence of the amplitudes is
taken out. There is no difference in phase (since the number of
reflections of all orbits is even), but a slight difference in am-
plitude, indicated by the arrows. This difference is of lower
order in wave number since it varies if longer sequences of
eigenvalues are Fourier transformed, but it stabilizes if Fourier
transforms with D =1 in Eq. (11) are taken.
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responsible for the nonperfect cancellations in the case
of the 3D circular cylinder, will be explained by correc-
tions due to a symmetry decomposition in the following
sections.

C. Triangular cross section

We take a triangle with corners at (0,k) and
(£hv/3/2,~h/2). The solutions of Eq. (5) are then given
by [7]

¥p(e, y)~sm[“’]f[ (m - n)w]

V3h
+ sin [qy] f l:\/_h( —l):c]
+sm["”‘] [ \/_h( m)m} (19)

for Dirichlet boundary conditions and by

) ~ cos [ S9] £ | o - wa]
+cos[m7r ] [ \/_h(n l)m}
+ cos ["” ] [ fh(l m)a;] (20)

for Neumann boundary conditions. Here h = /3L/2 is
the height of the equilateral triangle of side length L and
f(z) = sin(z) or cos(z); the two choices correspond to
functions symmetric or antisymetric around the symme-
try line £ = 0. The integers l,m,n are restricted by
l+m+n=0and! < m < n. States with n = m
or m = [ are nondegenerate, and all others are doubly
degenerate. In the case of Dirichlet boundary conditions
!, m,n have to be nonzero since otherwise the wave func-
tions vanish identically. These integers are related to the
wave number by

k,zym,n 3h2 (12 +m?+n 3. (21)
The third dimension is added as in the preceding cases.

In the equilateral triangle there is a periodic orbit with
an odd number of reflections off the walls. This is the or-
bit that connects the midpoints of the three sides of the
triangle and any odd traversal of this orbit (see Fig. 4).
The contribution of this orbit is in lower order in k since
it has one continuous degeneracy less than the dominant
ones [cf. Eq. (9)], but unlike in the case of the cylinder
with circular cross section the amplitude is the same in
the electromagnetic and in the scalar case. This is shown
in Fig. 5. Considering the two-dimensional equilateral
triangle with different kinds of boundary conditions, we
see that the orbit contributes for Dirichlet boundary con-
ditions but does not for Neumann boundary conditions
(Fig. 6). This shows that in next to leading order the
cancellation of orbits with an odd number of reflections
as predicted by the theory of Balian and Duplantier [5]
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FIG. 4. Unfolding of the equilateral triangle and construc-
tion of the Mdbius strip. Three copies of the triangle may be
combined to a Mdbius strip by identifying the points A and
A’ as well as C and C’. The motion on the torus can then
be visualized in the following way: One direction is along the
Mbobius strip, the other perpendicular to its axis with reflec-
tions on the upper and lower sides.

is violated. It can be related to symmetry properties of
the two-dimensional triangle as discussed in Sec. IIID.

III. BOUNDARY ORBITS

We will here study the effects of symmetries on the
theory of Balian and Duplantier [5]. To establish the
relation to the observations in Sec. II and to keep the
formalism as low as possible, we will focus on the case
of a 2D square with Dirichlet and Neumann boundary
conditions. The symmetries are discussed in Sec. IIT A,
followed by an outline of the theory of Berry and Ta-
bor [8] in Sec. IIIB and the symmetry decomposition
in Sec. IIIC. In the case of a triangular cross section
one proceeds in a similar fashion. The main results are
summarized in Sec. IIID.

A. Symmetry effects in the 2D square

As Fig. 3 shows, the kind of deviations from the the-
ory of Balian and Duplantier [5] observed in 3D electro-
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FIG. 5. Fourier transform of the electromagnetic eigen-
value density for a cylindrical cavity of triangular cross sec-
tion (height 7, side length of triangle 7, including the lowest
922293 eigenvalues of wave number k < 100 for the elec-
tromagnetic field and 451 788 eigenvalues of wave number
k < 100 for the scalar field). The labels (m,n) above the
peaks give the numbers of reflections in the z-y plane and 2
direction, respectively. The total number of collisions is m+n.

OLAF FRANK AND BRUNO ECKHARDT 53

1.0
—-— Neumann BC g
—— Dirichlet BC > <
0.8 ¢ =
N
- |
0.6 1 s
—_ -, E
= >l e <
||
i
02 k I !
g \ / M Gl
0.0 \ _>A | \ “‘l >ﬁ |
0.0 5.0 10.0 15.0

L

FIG. 6. Fourier transform for the scalar eigenvalue density
for a two-dimensional cavity of triangular cross section with
sidelength 7 for Neumann and Dirichlet boundary conditions
on the sides. The numbers indicate the number of reflections
on the boundary. The arrows indicate the difference in ampli-
tude for Neumann and Dirichlet boundary conditions. Note
that for three and nine reflections the amplitude for Neumann
boundary conditions is zero. For Neumann boundary condi-
tions we used the first 27 207 eigenvalues and for Dirichlet we
used the first 26 908 eigenvalues.

magnetic billiards is already present for 2D squares with
different boundary conditions. To leading order, the dif-
ference in boundary conditions only effects the phase of
the amplitudes: for Dirichlet boundary conditions, there
is a phase loss of 7 at each reflection, whereas there is no
phase loss for Neumann boundary conditions. Thus, in
a superposition of all eigenstates for both boundary con-
ditions, the contributions of orbits with an even num-
ber of reflections double in amplitude and the ones for
an odd number of reflections cancel. In the case of the
square (and the rectangle, which we will not consider
here, but which can be treated in the same way) there
are no periodic orbits with an odd number of reflections.
The observations (Fig. 3) confirm the phase effect but
also reveal a difference in amplitude between transforms
of spectra with Dirichlet and Neumann boundary condi-
tions and on closer inspection also a deviation from the
predictions of the semiclassical analysis of Berry and Ta-
bor [8]. In the case of Neumann boundary conditions the
amplitude is slightly too high, whereas it is too small for
Dirichlet boundary conditions. The key to the explana-
tion is that deviations occur for orbits parallel to the axes
only. These families of orbits include the boundary of the
billiard and require special care since they are invariant
under some symmetries of the classical motion.
Symmetries affect the periodic orbit formalism in two
ways [10]: if an orbit itself is symmetric, it may be sub-
divided into fundamental nonsymmetric segments, which
contribute with amplitudes similar to the usual ones.
More interesting in the present context are orbits which
run within a symmetry plane of the system since their
amplitudes often take on a different form than for other
periodic orbits (for a worked out example, see [11]).
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FIG. 7. Boundary orbits in a 2D square billiard. The
square ABCD is unfolded into ABA'D’'A’'B' A’ D, which tiles
the plane under translation. The symmetry axis considered
is the line BCB’. The orbit —0y, —6p is periodic for all —6p,
wheras the orbit —#8, 0 is periodic only if it coincides with the
symmetry axis for § = 0.

To see the origin of the symmetry under which the
boundaries of the square are invariant, consider the usual
unfolding of the square onto the plane [12]. One starts by
reflecting the square on its sides to form another square
with four copies of the original one, as shown in Fig. 7.
If the upper and the lower side as well as the left and the
right side are identified, the dynamics is equivalent to the
motion on a torus. Equivalently, the new square tiles the
plane under translation and the eigenvalues and eigen-
functions are a subset of those of the torus with periodic
boundary conditions. If the wave function satisfies Neu-
mann boundary conditions on the sides of the original
square, it is symmetric about the middle of the unfolded
square. As we consider the motion on a torus the wave
function is also symmetric about the outer walls of the
unfolded square. In case of Dirichlet boundary conditions
it is antisymmetric. The lines AD and BC are special in
that they are invariant under reflection, which gives rise
to modifications of the usual periodic orbit theory.

B. Theory of Berry and Tabor

The starting point of Berry and Tabor’s considerations
[8] is the energy dependent Greens function of the quan-
tum mechanical system

G(rA,rB,E)=/ dtexp[iEt/h]K(ra,rp,t), (22)
0

K(ra,rp,t) = (rp|exp[—iHt/h||r4). (23)

The energy eigenvalue density p(E) may be obtained
from the trace of G(ra,rp, F), leading to

p(E) = Re Wiﬁ /0 ~ dt expliBt/A] / dVrK(r,r,t). (24)
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Berry and Mount [13] give a semiclassical approximation
for the Greens function by means of the stationary phase
approximation. The Greens function then depends only
on the classical paths r of the system under consideration.
Let r4 be the starting point, rp the end point, W, the
action, and a, the Maslov index, counting the number of
caustics along the orbit. With N the number of degrees
of freedom of the system and D, the determinant of the
Hessian of W, with respect to the initial and final point
of the path considered,

(92 W,. drB -1
D = —_— | = y 25
r(ra,Tp, ) = det (BTA,iarB,j ) (dpAr ) (25)

we have

K(I'A,I'B,t)

1

= @rin)2 Z |D. |/ exp [i(W,/h — a,m/2)] . (26)

Integrable systems can be described by action angle
variables (I,0), where & = (01,05,...). The dynam-
ics of the system is then restricted to a torus in phase
space. The action variables are constants of the motion,
whereas the angular velocities follow immediately from
Hamilton’s equations of motion,

9 _ 91T = w(),

i L WN). (27)

w=(w1,..

The action along a path is determined by the initial and
final angles 8 4,05. We then have

W,.(I‘A,I‘B,t):I,.-(OB—OA)—H(I.,.)t. (28)

By means of the relation (8 — 64) = w(I,)t one can
rewrite D, as

doa\"' 1
dI, ~ tV det(0w;/dI,;)

D,(64,03,t) = ( (29)

To obtain the density of energy eigenvalues p(E) the
propagator K(ra,rp,t) has to be Fourier transformed
with respect to time. If we now take the trace we have
to sum over all configurations that return to the initial
point r after a time t. As a torus is periodic in 6; with
period 2w, taking the trace requires a summation over all
paths connecting the points

03‘. = 0A‘- + ki27r, kz € N. (30)
As the generalized momenta remain constant throughout
the process, we can write

27
/dNrK(r,r,t) :Z/ dNOK (68 + 27M, 6,t). (31)
M YO

The vector M of dimension N with integer entries deter-
mines the topology of the periodic orbits. The contribu-
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tion for M = O is the so-called Thomas-Fermi term

pre(B) = o hN//dpdréE H(r,p)].

OLAF FRANK AND BRUNO ECKHARDT 53

(32)

With I the vector of actions along the different directions of the torus we have in the semiclassical approximation

exp{[z 2rIpmM — H(Im)t + Et)/R] — tam - M7r/2}

CLIRE /
E) = E
P(E) = prr(E) + wh 27rzfi N/2 Z tV/2| det(dw; /01m, ) |22 (33)
This integral must be evaluated in stationary phase. The first derivative of the argument of the exponential is
o1
h%(phase) (2rM — tViH) - BltVI H(Im)+ FE
= E — H(Im(tm(E)))- (34)

The requirement that the phase be stationary fixes the time to be ¢ty (E), the time of revolution around an orbit of
topology M at energy E. The second derivative of the phase with respect to time is

ld[
hdt

where the last equality holds because of

ol

E — H(Im)] = —w(Inm) - —étM, (35)

w[Im(t)]t = 27M. (36)

With the definition

(2m)N-1

A (B) =

the final result for the density of eigenvalues reads [8]

p(E) = prr(E) + 2Rez Am(E) exp{i[27M - (Im /R
M

—dm/4)]}- (38)

We need to evalute these amplitudes for a 2D square
billiard with sidelength L, = L, = =, for which the
classical Hamiltonian in action-angle variables (8,1I) is
obtained from the association I = (kk,L,/m, hk Ly/'n’)
and F = A%k?, so that

H(IL,I,))=12+1}. (39)
Then the angular velocity becomes
w=2I, (40)
and the actions
In = TM/t. (41)

For the square one has non-negative actions I, I, and, by
Eq. (38), contributions for positive times only. Thus the
admissible values of M that contribute are non-negative
integers. With the time

tm(E) = n|M|/VE, (42)

one calculates the amplitudes (37)

(iﬁ)N+1(tM)N[ det(Bw,/BIMJ)H&J'(IM) N (91M (tM)/Bt] ’

e—~i7r/4

Am(E) = Wi ik

(43)

To obtain the amplitudes A, for the density of states in
k, Eq. (9), one uses p(k) = p(E)dE/dk and takes into
account that the lengths of orbits p with topology M,

L, = 2xM], (44)
coincide for M = (M., M,) and (M,, M;). One thus
finds

TABLE 1. Observed and calculated differences in am-

plitude for some orbits in the 2D square. The first col-
umn gives the length, the second the topological numbers

= (M,, M,), the third and fourth the amplitudes Apr/2
and As calculated from Eq. (60), and the last two the ob-
served values. To measure As, the difference between the
Dirichlet and Neumann bc density of states has been Fourier
transformed with D =1 in Eq. (11).

Ly (M., M,) Apr,:/2 A Aobs As obs
6.28 (0,1); (1,0) 0.500 1 0.494 0.974
8.88 (1,1) 0.420 0 0.411 0

12.56 (0,2); (2,0) 0.354 1 0.345 0.974
14.05 (1,2); (2,1) 0.669 0 0.668 0
17.77 (2,2) 0.297 0 0.296 0
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exp[—in/4
2¢/IM|

exp[—in/4
M|

for M, = M,

Ap =
for M, # M,

(45)

Fourier transforms confirm these amplitudes except for
topologies with M, = 0 or M, = 0 (see Table I). These
are affected by symmetrization, as discussed next.

C. Symmetry decomposition of the propagator

As mentioned before, the wave function in the unfolded
square is symmetric about the symmetry axis for Neu-
mann boundary conditions and antisymmetric for Dirich-
let boundary conditions. The propagator for these func-
tions can be split into a symmetric and an antisymmetric
part. The symmetry operation considered now is the re-
flection at the middle of the unfolded square (see Fig. 7).
This symmetry introduces new equivalent points and fur-
ther contributions to the trace equation (31) than just
those indicated by Eq. (30). For the following analysis,
we will only consider one of the boundaries, say BC, so
that the results have to be multiplied by 2 to account for
the second boundary orbit AD.

We will analyze the symmetry decomposition for the
reflection described by

9l(z,y)] = (-=,9).

There is an additional reflection on the z axis that can
be dealt with similarly. We will proceed with just this
symmetry and then extend to the full desymmetrization
later. And since the y-coordinate plays a minor role for
the above reflection, we will suppress it in the expressions
for the propagator that follow. The projection operators
onto even and odd subspaces are

(46)

Py = (e ),
P = %(e — 9. (47)
The propagator can now be decomposed
K=K, +K_ (48)
with
K,=P,KP, , K_=P_KP_. (49)
More precisely, we have
PLKP, = (e + 9)K(e + )
= —éli(eKe+gKe +eKg+ gKg)
= %[K(w, z',t) + K(—=z,2',t)
+K(z,—z',t) + K(—z,~2',1)]. (50)

As announced before, the y coordinates are suppressed in
the propagators. For motion on a torus the coordinates
z and z’ can be replaced by the angles 6, and 6. For
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the trace we can identify z = z’ and 6, = 6/, and use

K(z,z,t) = K(—z,—z,t),
K(—z,z,t) = K(z,—z,t) (51)
to arrive at
P,KP, = [K(0¢,0w,t)—{—K(0m, 0z,t)]. (52)
Similar arguments result in the expression
P_KP_ = J[K(6:,00,8) — K (62, —0n,0)]  (53)
for K_.

As above, taking the trace corresponds to an integra-
tion over all 6, and 6, and a summation over different
topologies M. This time, however, we have to allow for
all values of M,,, M, since we start from the propagator
on the torus with periodic boundary conditions. Then
M with negative components correspond to different or-
bits that are not on tori with positive components. All
of these orbits contribute to the same length L, and thus
affect the multiplicity of the amplitude. Hence,

tr Klp.o, = %Z / 6,0, (K (84,00 + 27 M, t)
M /-

for symmetric and
tr K|p.o, = Z da 0y [K (02,05 + 2w M, t)
—K(()w, —Gz + 27w M, t)] (55)

for antisymmetric states.

An evaluation of the second term yields a factor of 27
from the integration over the 6, component, since the
integrand does not depend explicitly on 6,. The propa-
gator

K(0,—0,t)

= Gy 21D i (F-ema)| 0

does depend on the second variable 8, through the action
[compare (28) and Fig. 7]
W, = (02 +n°M]) /t. (57)

When evaluated in stationary phase, one finds

/ 6,0, K][(0, 0, + 21M,), (—0,0,), ]

(4’Lh)1/2 1 Z 11r2M2/th (58)

This is the contribution of the boundary orbit, the orbit
that lies on the symmetry axis of the system. As the
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opposite side of the square is a symmetry axis as well,
there are two boundary orbits contributing. Thus the
correction has to be multiplied by 2.

The same procedure now has to be repeated for the
reflection on the y axis. The final result is that the sym-
metry decomposition (55) picks up a factor 1/4 and a
total of four contributions from paths connecting (8, 6,)
to (+05,+60,). If M = (M,, M,) denotes the topologies
of paths, then one has to consider three cases:

(i) If M, # 0 and M, # 0 and M, # M,, then there are
eight paths of different topologies on the torus contribut-
ing to the same length L, namely, M = (+M,,+M,)
and (+My,,+M;). Together with the 1/4 from the
desymmetrization, one recovers the Berry-Tabor ampli-
tude (45).

(ii) If M, # 0 and My # 0 and M, = M, then there
are just four paths of different topology on the torus, and
one again recovers the Berry-Tabor amplitude (45).

(iii) If M, = 0 or M, = 0, then first of all one has
only four different paths and thus in leading order an
amplitude that is half that of Berry and Tabor. Sec-
ond, there are contributions from the reflected paths, as
described by (58). Combining both cases M, # 0 and
M, # 0, one finds for the amplitude contributing to the
length L, = 2w M, in the symmetric (subscript +) and
antisymmetric subspaces (subscript —) the form

e—in/4

Ay = — & k12 (59)
V Yy

AL = %ABT + Ask_l/z , (60)

respectively. Apr is the amplitude assigned to the orbit
by the theory of Berry and Tabor [8], as given in Eq.
(45).

The term Apr can be determined as the average of
the amplitudes in Fourier transforms of the spectra for
Dirichlet and Neumann boundary conditions. The sub-
dominant symmetry correction As can be determined
from a Fourier transform of the difference in the spec-
tra with Neumann and Dirichlet boundary conditions,
weighted with D = 1 in the equivalent of Eq. (11). As
shown in Table I, these amplitudes are in agreement with
the observations that the correction Ag is independent of
M, the number of traversals of the orbit. Thus the de-
crease or increase in amplitude in Fig. 3, too, does not
depend on the number of traversals.

D. The case of the triangle

The analysis of the triangle eigenvalues proceeds in
a similar fashion with the additional difficulty that the
symmetry group is larger (three reflections and three ro-
tations) and gives rise not only to one-dimensional repre-
sentations but also to two-dimensional ones (as discussed,
e.g., in [14]). Continuing the unfolding of Fig. 4 one finds
that twelve copies of the triangle fit into a rectangle of
side length 3L by +/3L, which then covers the plane by
translations. The symmetry reduced Greens functions
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can be obtained by a summation over all symmetry im-
ages and their translations. The orbit shown in Fig. 4
is invariant under a reflection of the original triangle,
translated by half the side length of the rectangle along
both sides. It contributes in several of the symmetry sub-
spaces. When summed over all symmetry classes of the
triangle for the case of Dirichlet boundary conditions on
the outer boundary, one set of contributions survives. In
the case of Neumann boundary conditions, all contribu-
tions cancel. This is in agreement with the numerical
observations.

An alternative approach to the periodic orbit contri-
butions is based on an application of the Poisson summa-
tion formula to the density of states. For this it is useful
to unscramble the restrictions on the quantum numbers.
For m > 0, one can take all n > m (doubly degenerate)
and n = m (nondegenerate), with eigenvalues

4m?
Enm = 3?(n2 +m? +nm).
For m < 0, the restriction ! = —m —n and | < m can be

resolved by putting n = —2m+j andl = m—j with m =
—1,-2,... and j = 0 (nondegenerate) and j = 1,2,...
(doubly degenerate). The eigenvalues become

472

Fimi = 3p2

(3m? + j% — 3mj).

For the restrictions on the summation we need the Heav-
iside step function

0 zz<0
@(m)={1/2 z=0 . (61)
1 z >0

In the Dirichlet case, the density of states becomes

472
pp(E) = Z@(n)@(m)& (E - W(n2 +m? 4+ nm))

n,m

+2 " O(-m)0(5)s
x| E— 3"—2(3m2+ 2 — 3mj)
3h2 J J
~23" 6(m)s (E - g—%mz) +1/48(E).

For Neumann boundary conditions, the states with m =
0 have to be added: [ = n = 0 is nondegenerate, the oth-
ers with n = —l = 1,2,... are doubly degenerate. Thus
the density of states for Neumann boundary conditions
becomes

pn(E) = pp(E)
125" 0m)s (B 2
— 3h?
The Poisson summation formula applied to the differ-

ence in eigenvalue density for the two boundary condi-
tions gives
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4r? , V3h —imhV3E
;@(nﬁ <E T ) —;4W\/Ee .
In a Fourier transform in k = v/E, this gives rise to a
sequence of peaks at a spacing of Al = /3h = 3L/2.
This is the length of the triangle orbit shown in Fig. 4.
The terms in the double sum give rise to contributions
with weight 1/E = 1/k%. Thus, there are corrections
related to this orbit in Dirichlet boundary conditions,
but not in Neumann boundary conditions as observed.

IV. CONCLUDING REMARKS

We have examined some of the consequences of the
semiclassical Balian and Duplantier theory [5] for electro-
magnetic eigenvalue problems in integrable domains and
have studied the connection to Berry and Tabor’s the-
ory [8] for the appropriate boundary conditions. Some
examples of perfect and less perfect cancellations of or-
bits with an odd number of reflections were identified
and explained within the Berry and Tabor theory [8] and
symmetry extensions thereof.

The calculations also highlight the fact that, at least
in the separable systems, the cancellations of some or-
bits are due to the superposition of both the TE and
TM modes. If the detecting system interacts with cer-
tain electric or magnetic field components only, all orbits
can appear in the Fourier transform of the signal. Ac-
tually, if detector and source are sufficiently localized,
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all returning orbits (even nonperiodic ones), should con-
tribute.

What cannot be tested using separable cylindrical res-
onators is the amplitude modification due to the rotation
of polarizations. To this end one has to rely on resonators
like the 3D Sinai billiard and variants thereof. However,
since the density of orbits increases so rapidly and since
the short orbits rather often are planar without phase
rotations, this modification of amplitudes can only be
detected in high resolution Fourier transforms, requiring
very long eigenvalue sequences. The present calculations
suggest certain geometries in which the proliferation ef-
fect of periodic orbits can be reduced, thus easing the task
of identifying orbits with a modified amplitude: in per-
turbations of circular cavities, orbits with an odd number
of reflections are partly suppressed, and in perturbations
of spherical cavities, they will presumably not contribute
at all, thus reducing the number of lines in the Fourier
transforms. And if the perturbation is suitably chosen,
the whispering gallery modes can disappear. One should
be careful, however, not to introduce new symmetries
that will bring some of these suppressed orbits back up
in amplitude.
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